Semestral Exam B.Math Algebra-IV 2015-2016

Time: 3 hrs Max score: 100

Answer question (1) and any **five** from the rest.

(1) State true or false. Justify your answers with explanation.
(i) The extension Q(³√2, √3) over Q is normal.

(ii) If the Galois group of a polynomial $f(x) \in \mathbb{Q}[x]$ has odd order, then all roots of f(x) are real.

(iii) Let G be a finite group. Then there exists a field F and a polynomial $f(x) \in F[x]$ such that the Galois group of f(x) is G.

(iv) No irreducible polynomial of degree 5 is solvable by radicals.

(v) Galois group of an irreducible cubic is either cyclic group of order 3 or is S_3 . (5 × 5)

(2) (a) Determine the Galois group of the cyclotomic field $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} , where ζ_n denotes a primitive *n*-th root of unity.

(b) Determine intermediate fields of the extension $\mathbb{Q}(\zeta_7)|\mathbb{Q}$.

(c) Show that each of these intermediate extensions are simple, by finding primitive elements. (6+4+5)

(3) (a) Define constructible numbers. When is a regular n-gon said to be constructible?

(b) Prove that a regular *n*-gon is constructible if and only if $\phi(n)$ is a power of 2. (ϕ denotes the Euler-phi function). (3 + 12)

- (4) (a) Show that the finite field F_{pⁿ} is a simple extension of F_p.
 (b) Prove that the polynomial x^{pⁿ} − x is the product of all distinct irreducible polynomials in F_p[x] of degree d, where d runs over all divisors of n. (5 + 10)
- (5) (a)(i) Determine the splitting field K of the polynomial x^p x a over F_p, where a ≠ 0, a ∈ F_p.
 (ii) Show that the extension K|F_p is a cyclic extension. (7+8)

Please turn over

(6) Let F be a field of characteristic not dividing n, and containing all nth-roots of unity.

(a) Show that if K is a cyclic extension of F of degree n, then $K = F(\sqrt[n]{a})$ for some $a \in F$.

(b) Conversely, show that if $L = F(\sqrt[n]{a})$ for some $a \in F$, then L is a cyclic extension of F of degree dividing n. (9+6)

(7) Consider the polynomial f(x) = x⁵ - 4x + 2 over Q.
(a) Show that f(x) is irreducible and has 3 real roots and 2 complex roots.

(b) Hence show that f(x) is not solvable by radicals. (8+7)

 $\mathbf{2}$